CSEC SIGINT Cyber Discovery:
Summary of the current effort

Communications Security Establishment Canada
Covert Network Threats
Cyber-Counterintelligence

Discovery Conference
GCHQ – November 2010

Safeguarding Canada's security through information superiority
Préserver la sécurité du Canada par la supériorité de l'information
Outline

• CSEC SIGINT Cyber
 – K0G (CCNE)
 – GA4 (GND)
 – CNT1 (CCI)

• CSEC SIGINT Cyber – Operational Discovery
 – Network Based Anomaly Detection
 – Host Based Anomaly Detection

• Contacts
CSEC Cyber Counterintelligence

Target development
Active collection
Passive collection

CNE
CCNE
SRE
GND

Attribute
Persona
Characterize
Track
Develop Collection
Signatures
Counter CNE (K0G)

- Part of CSEC CNE operations (K0)
- Recently formed matrix team
- Analysts and operators from CNE Operations, Cyber-Counterintelligence and Global Network Detection
- Mandate:
 - Provide situational awareness to CNE operators
 - Discover unknown actors on existing CNE targets
 - Detect known actors on covert infrastructure
 - Pursue known actors through CNE
 - Review OPSEC of CNE operations
Global Network Detection (GND)

- Develop capabilities to improve the ability of the SIGINT collection system to detect Computer Network Exploitation and Computer Network Attack

- Help enable CSEC’s CNE program through timely identification of vulnerable computer systems and foreign CNE methodologies/activities

- Act as technical liaison between IT Security and SIGINT for CNO issues
Cyber Counterintelligence (CNT1)

- Covert Network Threats (New Directorate within CSEC)
 - CNT1 (Cyber Counterintelligence)
 - CNT2 (Traditional Counterintelligence)
- CNT1 Mission
 - To produce intelligence on the capabilities, intentions and activities of Hostile Intelligence Services to support Counterintelligence activities at home and abroad.
- Fusion of Cyber Analytic Skills with Traditional Counterintelligence Analytic Skills
 - All Cyber-Counterintelligence Investigations *should* lead to Traditional Counterintelligence investigations.
CSEC SIGINT CCI Discovery

- Attribute
- Characterize
- Report
- Active Pursuit
- Cyber-CI Disco
- SRE
- CCNE Disco
- ReplicantFarm
- Passive Pursuit
- GND Disco
- SlipStream

Safeguarding Canada's security through information superiority
Préserver la sécurité du Canada par la supériorité de l'information
CSEC CNE (K) - WARRIORPRIDE

• WARRIORPRIDE (WP):
 – Scalable, Flexible, Portable CNE platform
 – Unified framework within CSEC and across the 5 eyes
 – WARRIORPRIDE@CSE/etc. == DAREDEVIL@GCHQ
 – xml command output to operators

• Several plugins used for machine recon / OPSEC assessment
 Several WP plugins are useful for CCNE:
 – Slipstream : machine reconnaissance
 – ImplantDetector : implant detection
 – RootkitDetector : rootkit detection
 – Chordflier/U_ftp : file identification / retrieval
 – NameDropper : DNS
 – WormWood : network sniffing and characterization
K0G – ReplicantFarm

- Created to leverage the WP XML output in a meaningful way
- Module based parser/alert system running on real-time CNE operational data
- Custom/module based analysis:
 - Actors
 - Implant technology
 - Host based signatures
 - Network based signatures
REPLICANTFARM generic modules

- Cloaked
- Recycler
- Rar password
- Tmp executable
- Packed
- Peb modification
- Privileges
- MS pretender
- System32 "variables"
- Strange DLL extensions

- Kernel cloaking
- Schedule at
- Ntuninstall execution
- hidden

Other ideas....
my @runningProcs = xml_isProcessRunning($xml, 'svchost.{1,3}\exe',
 'winlogon.{1,3}\exe',
 'services.{1,3}\exe',
 'lsass.{1,3}\exe',
 'spoolsv.{1,3}\exe',
 'autochk.{1,3}\exe',
 'logon.{1,3}\scr',
 'rundll32.{1,3}\exe',
 'chkdsk.{1,3}\exe',
 'chkntfs.{1,3}\exe',
 'logonui.{1,3}\exe',
 'ntoskrnl.{1,3}\exe',
 'ntvdm.{1,3}\exe',
 'rdpclip.{1,3}\exe',
 'taskmgr.{1,3}\exe',
 'userinit.{1,3}\exe',
 'wscntfy.{1,3}\exe',
 'tcpmon.{1,3}\dll');

 foreach my $runningProc (@runningProcs)
 {
 $alertText .= "Suspicious process detected, legitimate exe named appended with string: " . $runningProc . "\n";

 Safeguarding Canada's security through information superiority
 Préservant la sécurité du Canada par l'importance de l'information
CCNE/Opsec WPID Alerts

Note that the search is done with the fields as perl regular expressions...

|------------------|-----------------------------------|-----------------------------------|---------------------------------------|-----------------------------------|-----------------------------------|---------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|

Submit Query

ALERTS

<table>
<thead>
<tr>
<th>Module:</th>
<th>Date:</th>
<th>Tag:</th>
<th>File name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>mod_103_MM_DOGHOUSE.pl</td>
<td>2010-01-21T15:36:39.968</td>
<td>MM</td>
<td>./datastore/archive/2010/01/21/15/TXID000000272485_18_Y200M001D21_H15M25859_MS642MU500NS0_RXID050_0000_0</td>
</tr>
</tbody>
</table>

Details:
Possible MM DOGHOUSE driver file: C:\WINNT\SnUninstallQ244598S.
Possible MM DOGHOUSE driver file: C:\WINNT\SnUninstallQ244598S\stf.sys.
Possible MM DOGHOUSE driver file: C:\WINNT\SnUninstallQ244598S\netbt.sys.
Possible MM DOGHOUSE driver file: C:\WINNT\SnUninstallQ244598S\tcpip.sys.
Possible MM DOGHOUSE driver file: C:\WINNT\SnUninstallQ244598S\hotfix.inf.

---PULLEDPOK---
EONBLUE

- CSEC cyber threat detection platform
- Over 8 years of development effort
- Scales to backbone internet speeds
- Over 200 sensors deployed across the globe

Track Known Threats
Discover Unknown Threats
Defence at the core of the Internet
EONBLUE

Myricom (10Gbps)

Target Tracking (SNIFFLE)
Metadata Production (DNS / HTTP)

Packet Buffer (2GB)

Target Discovery (SLIPSTREAM)
Anomaly Detection Tools

- There are currently over 50 modules in Slipstream
 - RFC Validation
 - Heuristic Checks
 - Periodicity
 - Simple Encryption
 - Streaming Attack Detection
 - Analyst Utilities

- Not all of these tools are ‘YES/NO’, some will require some work.
Heuristic Example

- QUANTUM
 - It’s no lie, quantum is cool.
 - But it’s easy to find
 - Analyze first content carrying packet
 - Check for sequence number duplication, but different data size
 - If content differs within the first 10% of the pkt payload, alert.
What’s Next?

• Anomaly Discovery at scale
 – Multi-10G anomaly detection

• Cross Agency communication of anomalies
 – Sometimes signatures aren’t enough

• DONUTS!
 – Everyone likes them:
 • [Redacted]
 – 5-eyes accessible DONUTS
 • Discovery of New Unidentified Threats
 • CSEC / GCHQ right now
TOP SECRET // COMINT
Global Access Roadmap supporting SRSG and WISDEN Scenarios

CLASSIFICATION: TOP SECRET // COMINT // REL TO FVEY
Safeguarding Canada’s security through information superiority
Préserver la sécurité du Canada par la supériorité de l’information

<table>
<thead>
<tr>
<th>Topic</th>
<th>Desired Outcomes</th>
<th>#</th>
<th>Activity</th>
</tr>
</thead>
</table>
| **Metadata Sharing** | - Shared Situational Awareness
- Assess value of metadata sharing
- Develop Use-Cases for Sharing
- Develop Requirements for NRT tipping | M | Bulk daily sharing of Cyber Event Metadata with 5-
M.1 Receive Metadata from partner agencies
M.2 Receive Metadata from partner agencies
M.3 Report on value of metadata sharing
M.4 Instrument NRT sharing of CSEC Cyber Event Metadata
M.5 Report on NRT sharing (value / lessons learned / rect’ls)
M.6 Enrich NRT feed with Geolocation / ASN
M.7 Add Impact information to event metadata
M.8 Extend Deadline Live feed from CSEC to GCPO
M.9 Receive Fastflux metadata (tip) b/w GCPO/CSEC (see T.6/T.7) |
| **Signatures and Target Knowledge** | - Replace current Signature Management system
- Impacts to support Action-on / Cuing and enhance Metadata feed
- Provide context to metadata sharing
- Experiment with TKB to gather requirements
- Create baseline of Cyber knowledge | S | Replace existing signature management with HalterHitch
S.2 Implement Impacts with DGI for Signatures (re-enter in HH)
S.3 Decommission current targetting process and replace with HH
S.4 Report on HH (value / lessons learned / requirements / etc)
S.5 Open SIGINT HH repository to ITS for Signature Sharing
S.6 Open SIGINT HH repository to 5-eyes to retrieve signatures
S.7 Trial nSpaces with CTEC / TAC / NAC / DGI
S.8 Report on value of nSpaces to support Target Knowledge
S.9 Set-up Collaborative Web Environment |
| **Sharing Cyber Content** | - Create a shared environment to experiment with content sharing
- Develop requirements / lessons learned on sharing content
- Illustrate equitable processing in Cyber capability
- Trial XKS for content sharing, built on existing metadata | C | Establish Cyber Play-Pen
C.1 Upgrade EONBLUE for use in Cyber Play-Pen
C.2 Assist in porting EONBLUE capability to PPF
C.3 Promote EONBLUE / PPF content to shared XKS
C.4 Evaluate retrieving GCPO content based on events from XKS
C.5 Trial feeding EONBLUE events at CSEC to a local XKS
C.6 Evaluate opening CSEC Cyber-XKS to GCPO
C.7 Report on content sharing experiments |
| **Tipping and Cuing** | - Leverage EONBLUE’s native messaging to extend national capability (within SIGINT / with ITS)
- Based on existing bilateral partnerships trial tipping / cueing to enhance content sharing / metadata sharing
- Cue international EONBLUE and similar components with FASTFLUX as trial
- Tip in NRT SIGINT events related to partner countries | T | Send EONBLUE cue’s across Canadian SSO Sites
T.1 Send EONBLUE cue’s between Canadian Passive Programs
T.2 Send EONBLUE cue’s between Canadian Passive Programs
T.3 Send EONBLUE cue’s between Canadian Passive Programs
T.4 Send tips on GoC activity to IT Security
T.5 Send EONBLUE cue’s from Canadian SIGINT to ITS Sensors
T.6 Introduce and develop Cyber Session Collection Experiment
T.7 Tip FASTFLUX events from CSEC to GCPO
T.8 Extend EONBLUE Fastflux cue’s to GCPO Fastflux Software
T.9 Receive cue’s from GCPO’s Fastflux Software at EONBLUE
T.10 Make FASTFLUX tips available to other 5-eyes agencies
T.11 Tip in NRT EONBLUE messages to 5-eyes based on IP-Geo
T.12 Send EONBLUE cue’s from CSEC EONBLUE to D5O EONBLUE
T.13 Based on equitable processing (C.3) send cue’s to GCPO
T.14 Prepare report on Tipping / Cuing (requirements / value / etc) |
CNT1 - Analysis

- Triage leads from K0G and GA4
 - Links to existing intrusion sets?
- Pursue interesting leads
 - Passive SIGINT collection
 - Technical analysis
- Produce reporting
- Attribute
Analytic Approach

1. Begin with lead
2. Apply to SIGINT
3. Apply to CCNE
4. Track, research and report
5. Generate persona lead
6. Coordinate with traditional CI
Cyber-Specifics of the Analytic Approach

Network Traffic Analysis
- We have access to Special Source, Warranted and 2nd Party collection in raw, unprocessed form
- Work very closely with protocol and crypt analysts

Malware Analysis and Reverse Engineering
- Samples are received through passive collection and human sources

Forensic Analysis
- Assist traditional CI investigations and others
CSEC Contacts

CCI (CNT1)

@cse
@cse
@cse

CCNE (K0G)

@cse
@cse
@cse

GND (GA4)

@cse
@cse
@cse

ioops@cse-cst.gc.ca
k0-ccne-dl@po.cse
ga4-staff@cse-cst.gc.ca